START_UTC_TIMESTAMP | END_UTC_TIMESTAMP | MIN_DB_VALUE | MAX_DB_VALUE | AVG_DB_VALUE | VENUE_NAME | VENUE_TYPE | VENUE_SUBTYPE | CONVERSATION | OCCUPANCE | PLACE | VENUE_PLACE | VENUE_QA | DEVICE_TYPE | COUNTRY | STATE | CITY | POSTCODE | STARTLAT | STARTLONG |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
xxxxxxxxxxxxx | xxxxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxx | xxxxxxxx | xxxxxx | xxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxx | xxxxxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxx | xxxxxxxxxx | xxxxxxxxxx |
xxxxxxxxxxxxx | xxxxxxxxxxxxx | xxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | xxxxxx | xxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxx | xxxxxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxx | xxxxxxxxxxx | xxxxxxxxxxxx |
xxxxxxxxxxxxx | xxxxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxx | xxxxxxxx | xxxxx | xxxxx | xxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxx | xxxxxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxx | xxxxxxxxxx | xxxxxxxxxxx |
xxxxxxxxxxxxx | xxxxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxx | xxxxx | xxxxx | xxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxx | xxxxxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxx | xxxxxxxxxx | xxxxxxxxxx |
xxxxxxxxxxxxx | xxxxxxxxxxxxx | xxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxxxxx | xxxxxxxx | xxxxxxxxxxx | xxxxx | xxxxx | xxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxx | xxxxxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxx | xxxxxxxxxx | xxxxxxxxxxx |
xxxxxxxxxxxxx | xxxxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxx | xxxxxxxx | xxxxxx | xxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxx | xxxxxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxx | xxxxxxxxxxx | xxxxxxxxxxxx |
xxxxxxxxxxxxx | xxxxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxx | xxxxxx | xxxxx | xxxxx | xxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxx | xxxxxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxx | xxxxxxxxxx | xxxxxxxxxxxx | |
xxxxxxxxxxxxx | xxxxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxx | xxxxx | xxxxx | xxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxx | xxxxxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxx | xxxxxxxxxxx | xxxxxxxxxxxx |
xxxxxxxxxxxxx | xxxxxxxxxxxxx | xxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxxxxxx | xxxxx | xxxxx | xxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxx | xxxxxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxx | xxxxxxxxxxx | xxxxxxxxxxxx |
xxxxxxxxxxxxx | xxxxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxx | xxxxxxxx | xxxxxx | xxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxx | xxxxxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxx | xxxxxxxxx | xxxxxxxxxxx |
Attribute | Type | Example |
---|---|---|
START_UTC_TIMESTAMP | String | 1743617417546 |
END_UTC_TIMESTAMP | String | 1743617438990 |
MIN_DB_VALUE | Float | 63.60825348 |
MAX_DB_VALUE | Float | 73.12963104 |
AVG_DB_VALUE | Float | 66.85712992 |
VENUE_NAME | String | Paris Baguette |
VENUE_TYPE | String | commercial |
VENUE_SUBTYPE | String | food_and_drink |
CONVERSATION | String | moderate |
OCCUPANCE | String | medium |
PLACE | String | outside |
VENUE_PLACE | String | {"placeId":"519104e10a287e52c0599ad9b743c3654440f00103f9012f1c72b80100000092030e5061726973204261677565747465","venueLocation":{"coordinates":[-73.971194,40.7950215],"type":"Point"},"venueName":"Par... |
VENUE_QA | String | {"conversation":"moderate","occupance":"medium","place":"outside"} |
DEVICE_TYPE | String | android |
COUNTRY | String | United States |
STATE | String | New York |
CITY | String | New York |
POSTCODE | Integer | 10025 |
STARTLAT | Float | 40.7950215 |
STARTLONG | Float | -73.971194 |
Description
Silencio’s POI Average Noise-Level Dataset helps retailers, brand strategists, and consumer intelligence teams assess how noise environments impact customer experience and brand perception across thousands of commercial chains globally. Built from over 10 million real POI check-ins across 200+ countries, this dataset reveals how different brands operate in varied sound environments. Use this dataset to: • Analyze noise exposure at retail locations • Understand how acoustic environments influence customer satisfaction • Guide brand strategy and store placement decisions Delivered via CSV exports or S3 bucket. AI-driven noise analytics will soon enhance this dataset. Fully anonymized and GDPR-compliant.
Country Coverage
(236 countries)Data Categories
- Store Location Data
- Point of Interest (POI) Data
- In-store Data
- Retail Data
- Retail Store Data
Pricing
One-off purchase | $5K $4.5K |
Monthly License | $2.5K $2.25K |
Yearly License | $20K $18K |
Usage-based |
Not available |
Volumes
- Samples
- 10M
- Attributes
- 20
Does this product fit your data needs?
Get in touch with our team to start unlocking your data solutions.
Request Information