START_UTC_TIMESTAMP | END_UTC_TIMESTAMP | MIN_DB_VALUE | MAX_DB_VALUE | AVG_DB_VALUE | VENUE_NAME | VENUE_TYPE | VENUE_SUBTYPE | CONVERSATION | OCCUPANCE | PLACE | VENUE_PLACE | VENUE_QA | DEVICE_TYPE | COUNTRY | STATE | CITY | POSTCODE | STARTLAT | STARTLONG |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
xxxxxxxxxxxxx | xxxxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxx | xxxxxxxx | xxxxxx | xxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxx | xxxxxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxx | xxxxxxxxxx | xxxxxxxxxx |
xxxxxxxxxxxxx | xxxxxxxxxxxxx | xxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | xxxxxx | xxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxx | xxxxxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxx | xxxxxxxxxxx | xxxxxxxxxxxx |
xxxxxxxxxxxxx | xxxxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxx | xxxxxxxx | xxxxx | xxxxx | xxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxx | xxxxxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxx | xxxxxxxxxx | xxxxxxxxxxx |
xxxxxxxxxxxxx | xxxxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxx | xxxxx | xxxxx | xxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxx | xxxxxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxx | xxxxxxxxxx | xxxxxxxxxx |
xxxxxxxxxxxxx | xxxxxxxxxxxxx | xxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxxxxx | xxxxxxxx | xxxxxxxxxxx | xxxxx | xxxxx | xxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxx | xxxxxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxx | xxxxxxxxxx | xxxxxxxxxxx |
xxxxxxxxxxxxx | xxxxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxx | xxxxxxxx | xxxxxx | xxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxx | xxxxxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxx | xxxxxxxxxxx | xxxxxxxxxxxx |
xxxxxxxxxxxxx | xxxxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxx | xxxxxx | xxxxx | xxxxx | xxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxx | xxxxxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxx | xxxxxxxxxx | xxxxxxxxxxxx | |
xxxxxxxxxxxxx | xxxxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxx | xxxxx | xxxxx | xxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxx | xxxxxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxx | xxxxxxxxxxx | xxxxxxxxxxxx |
xxxxxxxxxxxxx | xxxxxxxxxxxxx | xxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxxxxxx | xxxxx | xxxxx | xxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxx | xxxxxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxx | xxxxxxxxxxx | xxxxxxxxxxxx |
xxxxxxxxxxxxx | xxxxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxx | xxxxxxxx | xxxxxx | xxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxx | xxxxxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxx | xxxxxxxxx | xxxxxxxxxxx |
Attribute | Type | Example |
---|---|---|
START_UTC_TIMESTAMP | String | 1743617417546 |
END_UTC_TIMESTAMP | String | 1743617438990 |
MIN_DB_VALUE | Float | 63.60825348 |
MAX_DB_VALUE | Float | 73.12963104 |
AVG_DB_VALUE | Float | 66.85712992 |
VENUE_NAME | String | Paris Baguette |
VENUE_TYPE | String | commercial |
VENUE_SUBTYPE | String | food_and_drink |
CONVERSATION | String | moderate |
OCCUPANCE | String | medium |
PLACE | String | outside |
VENUE_PLACE | String | {"placeId":"519104e10a287e52c0599ad9b743c3654440f00103f9012f1c72b80100000092030e5061726973204261677565747465","venueLocation":{"coordinates":[-73.971194,40.7950215],"type":"Point"},"venueName":"Par... |
VENUE_QA | String | {"conversation":"moderate","occupance":"medium","place":"outside"} |
DEVICE_TYPE | String | android |
COUNTRY | String | United States |
STATE | String | New York |
CITY | String | New York |
POSTCODE | Integer | 10025 |
STARTLAT | Float | 40.7950215 |
STARTLONG | Float | -73.971194 |
Description
Silencio’s POI Noise-Level Dataset provides noise profiles segmented by business type, such as restaurants, gyms, nightlife, offices, and more, based on over 10 million POI check-ins worldwide. This dataset enables competitor benchmarking and market analysis by revealing how different types of businesses operate within diverse acoustic environments. Use this dataset to: • Benchmark competitors based on environmental soundscapes • Analyze customer experience factors linked to noise levels (i.e. how easy it is to have a conversation within the POI or how full the venue is). • Gain deeper insights into urban commercial environments Delivered via CSV or S3 bucket. AI-driven insights will soon expand this dataset’s capabilities. Fully anonymized and GDPR-compliant.
Country Coverage
(236 countries)Data Categories
- Point of Interest (POI) Data
- In-store Data
- Retail Data
- Retail Store Data
- Commercial Real Estate Data
Pricing
One-off purchase | $5K $4.5K |
Monthly License | $2.5K $2.25K |
Yearly License | $20K $18K |
Usage-based |
Not available |
Volumes
- Records
- 10M
Does this product fit your data needs?
Get in touch with our team to start unlocking your data solutions.
Request Information