START_UTC_TIMESTAMP | END_UTC_TIMESTAMP | MIN_DB_VALUE | MAX_DB_VALUE | AVG_DB_VALUE | VENUE_NAME | VENUE_TYPE | VENUE_SUBTYPE | CONVERSATION | OCCUPANCE | PLACE | VENUE_PLACE | VENUE_QA | DEVICE_TYPE | COUNTRY | STATE | CITY | POSTCODE | STARTLAT | STARTLONG |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
xxxxxxxxxxxxx | xxxxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxx | xxxxxxxx | xxxxxx | xxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxx | xxxxxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxx | xxxxxxxxxx | xxxxxxxxxx |
xxxxxxxxxxxxx | xxxxxxxxxxxxx | xxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | xxxxxx | xxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxx | xxxxxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxx | xxxxxxxxxxx | xxxxxxxxxxxx |
xxxxxxxxxxxxx | xxxxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxx | xxxxxxxx | xxxxx | xxxxx | xxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxx | xxxxxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxx | xxxxxxxxxx | xxxxxxxxxxx |
xxxxxxxxxxxxx | xxxxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxx | xxxxx | xxxxx | xxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxx | xxxxxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxx | xxxxxxxxxx | xxxxxxxxxx |
xxxxxxxxxxxxx | xxxxxxxxxxxxx | xxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxxxxx | xxxxxxxx | xxxxxxxxxxx | xxxxx | xxxxx | xxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxx | xxxxxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxx | xxxxxxxxxx | xxxxxxxxxxx |
xxxxxxxxxxxxx | xxxxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxx | xxxxxxxx | xxxxxx | xxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxx | xxxxxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxx | xxxxxxxxxxx | xxxxxxxxxxxx |
xxxxxxxxxxxxx | xxxxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxx | xxxxxx | xxxxx | xxxxx | xxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxx | xxxxxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxx | xxxxxxxxxx | xxxxxxxxxxxx | |
xxxxxxxxxxxxx | xxxxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxx | xxxxx | xxxxx | xxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxx | xxxxxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxx | xxxxxxxxxxx | xxxxxxxxxxxx |
xxxxxxxxxxxxx | xxxxxxxxxxxxx | xxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxxxxxx | xxxxx | xxxxx | xxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxx | xxxxxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxx | xxxxxxxxxxx | xxxxxxxxxxxx |
xxxxxxxxxxxxx | xxxxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxx | xxxxxxxx | xxxxxx | xxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxx | xxxxxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxx | xxxxxxxxx | xxxxxxxxxxx |
Attribute | Type | Example |
---|---|---|
START_UTC_TIMESTAMP | String | 1743617417546 |
END_UTC_TIMESTAMP | String | 1743617438990 |
MIN_DB_VALUE | Float | 63.60825348 |
MAX_DB_VALUE | Float | 73.12963104 |
AVG_DB_VALUE | Float | 66.85712992 |
VENUE_NAME | String | Paris Baguette |
VENUE_TYPE | String | commercial |
VENUE_SUBTYPE | String | food_and_drink |
CONVERSATION | String | moderate |
OCCUPANCE | String | medium |
PLACE | String | outside |
VENUE_PLACE | String | {"placeId":"519104e10a287e52c0599ad9b743c3654440f00103f9012f1c72b80100000092030e5061726973204261677565747465","venueLocation":{"coordinates":[-73.971194,40.7950215],"type":"Point"},"venueName":"Par... |
VENUE_QA | String | {"conversation":"moderate","occupance":"medium","place":"outside"} |
DEVICE_TYPE | String | android |
COUNTRY | String | United States |
STATE | String | New York |
CITY | String | New York |
POSTCODE | Integer | 10025 |
STARTLAT | Float | 40.7950215 |
STARTLONG | Float | -73.971194 |
Description
Connect with our experts for Street and Venue Noise-Level Data. Unlock unique insights into the real-world acoustic environment of cities and venues across 180+ countries. Silencio has built the world’s largest database on noise levels, statistically interpolated using over 35 billion datapoints, developed in collaboration with leading acoustics professionals. Unlike traditional models that rely solely on computed estimations, our dataset uniquely combines real-world measurements with AI-driven predictions to deliver the most accurate and reliable noise-level data available today. Maximize AI Performance with the World’s Largest Real-World Noise-Level Dataset What sets our dataset apart? Silencio’s Street and Venue Noise-Level Data is the world’s largest and most accurate collection of real-world acoustic data, combining over 35 billion datapoints with AI-driven interpolation, developed together with professional acousticians. Unlike synthetic models, our dataset integrates real measurements and AI predictions to provide unparalleled ground truth for AI training. Designed for AI Applications: Empower your AI models with high-quality, diverse, and realistic acoustic data. Ideal for training AI in sound recognition, noise mapping, autonomous systems, smart cities, mobility intelligence, and beyond. Reliable & Compliant: Collected through our mobile app with explicit user consent, fully anonymized, and fully GDPR-compliant, ensuring ethical sourcing and regulatory alignment. Historical & Real-Time: Train models using both historical and continuously updated data to improve accuracy and robustness over time and across regions. Granular & Customizable: Globally available, highly granular, and adaptable to your AI pipeline needs — from raw acoustic datapoints to aggregated sound profiles. Simple Integration: Delivered via CSV exports or S3 bucket delivery (APIs coming soon), allowing smooth integration into your existing AI training workflows.
Country Coverage
(236 countries)Data Categories
- Location Data
- Point of Interest (POI) Data
- Machine Learning (ML) Data
- Audio Data
- Large Language Model (LLM) Data
Pricing
One-off purchase | $50K $45K |
Monthly License | $5K $4.5K |
Yearly License | $30K $27K |
Usage-based |
Not available |
Volumes
- hours
- 10M
- POI measurements
- 10M
- different sensors
- 1M
- attributes
- 20
Does this product fit your data needs?
Get in touch with our team to start unlocking your data solutions.
Request Information